Alert	Procesibe as novadronalino base. Maradronalino acid tartrato 2 mg/ml is aquivalent to novadronalino base.
Alert	Prescribe as noradrenaline base . Noradrenaline acid tartrate 2 mg/mL is equivalent to noradrenaline base 1 mg/mL (1:1000)
	The antidote for extravasation ischaemia is phentolamine. Phentolamine is only available via the Special
	Access Scheme.
Indication	Treatment of hyperdynamic shock secondary to sepsis. (1)
mulcation	Second line inotrope for treatment of fluid-refractory hypotensive shock in the setting of low systemic
	vascular resistance (SVR). (1)
	Circulatory failure in the setting of pulmonary hypertension refractory to nitric oxide. (2)
Action	Catecholamine with strong vascular alpha and cardiac beta-adrenergic action, moderate cardiac alpha-
Action	adrenergic actions. (3)
	Noradrenaline increases blood pressure, urine output and reduces lactate in newborns with septic shock
	refractory to volume expansion and other inotropes. (4)
	Noradrenaline increases systemic and pulmonary pressures, increases pulmonary blood flow and improves
	systemic oxygen saturation in newborn infants with pulmonary hypertension and circulatory failure. (2)
Drug Type	Inotrope and vasopressor
Trade Name	Hospira Levophed Noradrenaline 1:1000, Noradrenaline BNM 1:1000, Noradrenaline MYX 1:1000,
Traue Name	Noradrenaline Juno 1:1000, Noradrenaline Medsurge 1:1000. All contain Noradrenaline acid tartrate.
Presentation	Noradrenaline acid tartrate 8 mg/4 mL is equivalent to noradrenaline base 4 mg/4 mL (1:1000)
Dose	0.05-1 microgram/kg/minute of noradrenaline base. *
D03E	(a) Suggested starting dose of 0.1 microgram/kg/minute and titrate up to achieve not only
	normotensive range of blood pressure but also improved tissue perfusion manifested by good
	urine output, improved FiO ₂ , and reduced lactate.
	(b) Consider starting at higher dose particularly in term infants with respiratory failure and
	hypotension refractory to other treatments.
	*NOTE: The time from the initiation of infusion to the entry of the drug into blood stream may influence
	the time it takes to see the clinical effect. This lag time can be reduced by (a) starting temporarily at a higher
	dose by increasing the infusion rate, and/or (b) priming the line as close to the entry point as possible to
	reduce the dead space – however, care should be taken not to deliver excess volume that may result in
	tachycardia and hypertension.
Dose adjustment	Therapeutic hypothermia – No information.
•	ECMO – Titrate dose according to the patient's response.
	Renal impairment – No dose adjustment is required.
	Hepatic impairment – No dose adjustment is required.
Maximum dose	
Route	Continuous IV infusion
Preparation	Note: Refer to Appendix for tables to assist with concentration selection.
	20ml Suringo
	20mL Syringe
	5 microgram/mL infusion (suggested for weight <0.5 kg and weaning dose <0.03 microgram/kg/minute)
	Draw up 4 mL (4 mg) of noradrenaline and add 16 mL of glucose 5% (preferred) or sodium chloride 0.9% to
	make a 20 mL solution [200 microgram/mL].
	Further dilute: Draw up 0.5 mL of this solution (100 microgram) and add 19.5 mL of glucose 5% (preferred) or sodium chloride 0.9% to make a final volume of 20 mL.
	0.05 microgram/kg/minute = 0.6 mL/kg/hour.
	0.05 microgram/kg/minute = 0.6 mL/kg/nour.
	10 microgram/mL infusion (suggested weight <1 kg)
	Draw up 4 mL (4 mg) of noradrenaline and add 16 mL of glucose 5% (preferred) or sodium chloride 0.9%
	to make a 20 mL solution [200 microgram/mL].
	Further dilute: Draw up 1 mL of this solution (200 microgram) and add 19 mL of glucose 5% (preferred) or
	sodium chloride 0.9% to make a final volume of 20 mL.
	0.05 microgram/kg/minute = 0.3 mL/kg/hour.
	0.00 merogram, kg/mmate – 0.0 me/ kg/mour

Newborn use only

20 microgram/mL infusion (suggested weight 1 to <3 kg)

Draw up 4 mL (4 mg) of noradrenaline and add 6 mL of 5% glucose (preferred) or sodium chloride 0.9% to make a 10 mL solution [400 microgram/mL].

Further dilute: Draw up 1 mL of this solution (400 microgram) and add 19 mL of glucose 5% (preferred) or sodium chloride 0.9% to make a final volume of 20 mL.

0.05 microgram/kg/minute = 0.15 mL/kg/hour.

60 microgram/mL infusion (suggested weight ≥3 kg)

Draw up 4 mL (4 mg) of noradrenaline and add 6 mL of glucose 5% (preferred) or sodium chloride 0.9% to make a 10 mL solution [400 microgram/mL].

Further dilute: Draw up 3 mL of this solution (1200 microgram) and add 17 mL of glucose 5% (preferred) or sodium chloride 0.9% to make a final volume of 20 mL.

0.05 microgram/kg/minute = 0.05 mL/kg/hour.

120 microgram/mL infusion (suggested for fluid restricted babies requiring high inotropic support)

Draw up 4 mL (4 mg) of noradrenaline and add 6 mL of glucose 5% (preferred) or sodium chloride 0.9% to make a 10 mL solution [400 microgram/mL].

Further dilute: Draw up 6 mL of this solution (2400 microgram) and add 14 mL of glucose 5% (preferred) or sodium chloride 0.9% to make a final volume of 20 mL.

0.05 microgram/kg/minute = 0.025 mL/kg/hour.

50mL Syringe

10 microgram/mL infusion (suggested weight <1 kg)

Draw up 4 mL (4 mg) of noradrenaline and add 16 mL of glucose 5% (preferred) or sodium chloride 0.9%8 to make a 20 mL solution [200 microgram/mL].

Further dilute: Draw up 2.5 mL of this solution (500 microgram) and add 47.5 mL of glucose 5% (preferred) or sodium chloride 0.9% to make a final volume of 50 mL.

0.05 microgram/kg/minute = 0.3 mL/kg/hour.

20 microgram/mL infusion (suggested weight 1 to <3 kg)

Draw up 4 mL (4 mg) of noradrenaline and add 6 mL of 5% glucose (preferred) or sodium chloride 0.9% to make a 10 mL solution [400 microgram/mL].

Further dilute: Draw up 2.5 mL of this solution (1000 microgram) and add 47.5 mL of glucose 5% (preferred) or sodium chloride 0.9% to make a final volume of 50 mL.

0.05 microgram/kg/minute = 0.15 mL/kg/hour.

60 microgram/mL infusion (suggested weight ≥3 kg)

Draw up 4 mL (4 mg) of noradrenaline and add 6 mL of 5% glucose (preferred) or sodium chloride 0.9% to make a 10 mL solution [400 microgram/mL].

Further dilute: Draw up 7.5 mL of this solution (3000 microgram) and add 42.5 mL of glucose 5% (preferred) or sodium chloride 0.9% to make a final volume of 50 mL.

0.05 microgram/kg/minute = 0.05 mL/kg/hour.

120 microgram/mL infusion (suggested for fluid restricted babies requiring high inotropic support)

Draw up 8 mL (8 mg) of noradrenaline and add 2 mL of glucose 5% (preferred) or sodium chloride 0.9% to make a 10 mL solution [800 microgram/mL].

Further dilute: Draw up 7.5 mL of this solution (6000 microgram) and add 42.5 mL of glucose 5% (preferred) or sodium chloride 0.9% to make a final volume of 50 mL.

0.05 microgram/kg/minute = 0.025 mL/kg/hour.

Administration Noradrenaline should be given via a central venous catheter (UVC or PICC) using a continuous infusion. Infuse through a dedicated line where possible.

Monitoring Continuous heart rate, ECG and blood pressure.

Assess urine output and peripheral perfusion frequently.

Observe IV site closely for blanching and extravasation.

Contraindications	Infants with hypovolaemia until blood volume replaced - may cause severe peripheral and visceral
Contramulcations	vasoconstriction.
	Infants with mesenteric or peripheral thrombosis.
	Known hypersensitivity to sodium metabisulfite.
Precautions	Use with caution in preterm infants and infants with poor myocardial contractility as a sole
Trecautions	inotrope/vasopressor.
	Thyrotoxicosis – may cause severe hypertension.
	Ensure adequate circulating blood volume prior to commencement.
	Avoid in hypertension.
	Overdosage may result in severe hypertension, reflex bradycardia, marked increase in peripheral
	resistance and decreased cardiac output.
	The infusion site should be checked frequently for free flow. Care should be taken to avoid extravasation
	into the tissues which may cause local necrosis.
	Do not cease infusion abruptly.
Drug Interactions	Should be given with close monitoring to patients exposed to monoamine oxidase inhibitors because
	severe, prolonged hypertension may result.
Adverse	Systemic hypertension especially at higher doses.
Reactions	Reflex bradycardia and arrhythmia.
	Tissue necrosis at infusion site with extravasation. See special comments.
	Renal and digital ischaemia may occur.
	Prolonged administration of any potent vasopressor may result in plasma volume depletion which should
	be continuously corrected by appropriate fluid and electrolyte replacement therapy.
Compatibility	Fluids: Glucose 5% (preferred), sodium chloride 0.9% with glucose 5%, sodium chloride 0.9% (variable) ⁽⁸⁾ ,
	lactated Ringer's solution.
	Y-site: Amiodarone, anidulafungin, bivalirudin, caspofungin, ceftaroline, fosamil, cisatracurium,
	dexmedetomidine, dobutamine, dopamine, doripenem, esmolol, ethanol, haloperidol lactate, heparin
	sodium, hydrocortisone sodium succinate, labetalol, midazolam, milrinone, morphine sulfate, mycophenolate mofetil, potassium chloride, remifentanil, sodium nitroprusside, tigecycline.
Incompatibility	Fluids: No information. 10% Dextrose not tested.
incompatibility	Fidius. No illiorillation. 10% Dextrose not tested.
	Y-site: aminophylline, azathioprine, benzylpenicillin, folic acid, foscarnet, ganciclovir, indomethacin, insulin
	(short-acting), iron salts, phenobarbitone, phenytoin, sodium bicarbonate, thiopentone. Incompatible with
	alkalis and oxidising agents.
	No information: Adrenaline HCl is compatible with noradrenaline bitartrate but no stability data is
	available for Adrenaline acid tartrate and noradrenaline acid tartrate.
Stability	Diluted solution stable for 24 hours
Storage	Ampoule: Store below 25°C. Protect from light. Discard unused portion. Do not freeze.
Excipients	Levophed brand: Sodium metabisulfite, sodium chloride, water for injections
	BNM and Juno brand: Sodium chloride and water for injections.
Special Comments	Do not administer with blood products.
	Glucose solutions (10%, 5%) are protective against the oxidation of noradrenaline.
	Discard if exhibiting colour change (oxidation).
	The antidote for extravasation ischaemia is phentolamine. Phentolamine is only available via the Special
	Access Scheme.
Evidence	Background
	Norepinephrine is an endogenous catecholamine which is released from adrenergic nerve endings. It has
	strong stimulating effects on α and β 1 receptors and weaker effects on β 2 receptors. Noradrenaline has
	more potent α mediated effects compared to adrenaline. This results in vascular constriction with a
	subsequent increase in systemic vascular resistance (SVR) and blood pressure (BP). It may be useful in
	septic shock, in order to correct the low SVR. (10)
	Efficacy

Newborn use only

Norepinephrine is the first inotrope of choice in septic shock in adults. (1) Norepinephrine is also recommended as an inotrope in children with septic shock. (2) However, there are no randomised trials comparing noradrenaline to other vasopressors in newborn infants. Noradrenaline was equivalent to other vasopressors in patients with hypotensive shock (newborns excluded) and resulted in less arrhythmia than dopamine. (3) (LOE I, GOR B).

Term newborns with septic shock: Noradrenaline 0.2–0.5 microgram/kg/minute increased blood pressure, urine output and reduced lactate in newborns with septic shock refractory to volume expansion and dopamine/dobutamine.⁽⁴⁾ (LOE IV, GOR C).

Term newborns with pulmonary hypertension and circulatory failure refractory to fluid resuscitation: Noradrenaline 0.5–1 microgram/kg/minute improved lung function in newborn infants with PHN through a decrease in pulmonary/systemic artery pressure ratio and improved cardiac performance. (5) (LOE IV, GOR C).

Preterm newborns with refractory hypotension: A few studies reported the effects of noradrenaline in preterm infants. Rowcliff et. al. reported noradrenaline [starting dose 0.4 (0.2–0.5) μg/kg/min; maximum dose 0.7 (0.4–1) µg/kg/min] in 48 hypotensive infants born ≤32 weeks' gestation with a primary diagnosis of sepsis (63%) or pulmonary hypertension (23%) refractory to other interventions. Normotension was achieved in all but one infant at a median dose of 0.5 µg/kg/min. The increased blood pressure did not lead to immediate improvement of pH, lactate or urine output. Tachycardia was common (31%). Mortality was 46% and morbidity high.⁽⁶⁾ Rizk et. al. reported noradrenaline (starting dose 0.1 μg/kg/min; maximum dose 0.24 ± 0.15 µg/kg/min) in 30 hypotensive preterm infants with septic shock. Noradrenaline infusion was associated with improvements in blood pressure, urine output and FiO2, and reduction in other inotrope support. Mortality was 33.3%, 5 of 16 survivors assessed had cerebral palsy and developmental delay.⁽⁷⁾ Nissimov et al compared the clinical effectiveness of dopamine (DA) versus norepinephrine (NE) as first-line therapy for sepsis-related hypotension in preterm infants. (11) In this retrospective cohort study, preterm infants born < 35 weeks were included. A total of 156 infants were included, 113 received DA and 43 NE. The mean ± SD PMA at birth and at treatment for the DA and NE groups were 25.8 ± 2.3 vs. 25.2 ± 2.0 weeks and 27.7 ± 3.0 vs. 27.1 ± 2.6 weeks, respectively (p > 0.05). Authors found NE was more effective than DA in these infants. NE was associated with lower episode-related mortality [adjusted odds ratio (95% CI) 0.55 (0.33, 0.92)], pre-discharge mortality [0.60 (0.37, 0.97)], post-illness new diagnosis of significant neurologic injury [0.32 (0.13, 0.82)], and subsequent occurrence of NEC/sepsis among the survivors [0.34, (0.18, 0.65)]. (11) Gupta et al, reported a retrospective cohort study describing the clinical responses in neonates in shock treated with NE infusion. Fifty infants received NE with mean (SD) gestational age of 34.3 (4.3) weeks and a mean birth weight of 2215 (911) g. Treatment began at a median age of 36 (IQR: 15.2, 67.2) hours of life and lasted 30.5 (IQR: 12.7, 58) hours. NE was administered at 0.1-0.4 mcg/kg/min. Mean BP improved from 34.4 mm Hg (SD: 6.6) at baseline to 39.4 mm Hg (SD: 10.5, p < 0.001) at 6 h, to 39.6 mm Hg (SD: 12.1, p = 0.002) at 12 h and to 40.4 mm Hg (SD: 15.5, p = 0.004) at 24 h after NE initiation. Urine output improved within 24 h [1.5 ml/kg/h (0.5, 2.3) at baseline to 3 (1.9, 4.3) at 24 h; p = 0.04]. Oxygen requirement decreased after NE initiation.

ANMF group consensus: The above studies, and the clinical experience gained from the current clinical practice in Australian settings support the use of norepinephrine for the treatment of hypotension, in particular refractory vasodilatory hypotension (LOE IV, GOR C).

Safety

In non-newborn patients, noradrenaline is associated with less arrhythmia compared to patients treated with dopamine. Overdose may result in severe hypertension, reflex bradycardia, marked increase in peripheral resistance and decreased cardiac output. Cohort studies show that delay in the use of inotropic therapies is associated with major increases in mortality risk. This delay is often related to difficulty in attaining central access. Inotropes can be given peripherally until central venous access can be attained in children who are not responsive to fluid resuscitation. (1)

Pharmacokinetics

The onset of action is rapid after intravenous infusion. The half-life of intravenous noradrenaline has not been reported in sick newborn infants. (8)

Practice points											
Practice points References	Jaesch severe 2. Brierle Duncal M, Har M, Me Rodrig Weing param Americ 3. Havel Cochra 4. Tourne refract paedia 5. Tourne newbo 6. Rowclir compro 7. Rizk M the pre 8. Norepi 9. Noradi 10. Demps 1;46(2 11. Nissim XY, We retrosp 12. Gupta hemod	ke R, Osb sepsis ar y J, Carcil n A, Evan n YY, Han hta R, Na uez A, Ro arten J, Y eters for can Colleg C, Arrich . ane datab eux P, Ral ory to flu trica. 200 eux P, Ral ory to flu trica. 200 evx P, Ral de ory to flu extern infa inephrine trenaline J exertive co S, Agraw dynamic p	orn TM. Sond septic s	Surviving shock, 20 pong K, Conan J, Feli velzet J, H uyen T, Nick, Schnitzlichtsky A, Stramic suppeal Care M, Gamperstematic rolling and dopostematic states A, Kristent phamed Al rolling septic specific specif	Sepsis Car 12. Intens ornell T, D met K, Fisl ernan L, K icholson C er E, Shan ojadinovic port of pe Medicine. r G, Mulln reviews. 2 rim G, Sto vamine or Crim G, Sto vamine or Stones MIMS onl rdiotonic c F, Ripsteir nephrine ean Journa vta A, Waz nates with	mpaign: in ive care m ecaen A, I ner G, Frai iff J, Kisso E, Peters M ley T, Kacle B, Zimme diatric and Crit Care I er M, Her 011:CD00 rme L. Nordobutami Drme L. Puhypertens ar T. Nora A, Daniel B, Sonline. A drugs in ner G, Baczy for sepsisal of Pedia ir S. The e	ternation: ternation: nedicine. 2 Deymann nkel L, Jefi on N, Kon 1, Okhuyso ne S, Skipp erman J, Z d neonata Med. 2009 kner H. Va 3709. radrenalin ne in full- ulmonary o drenaline drenaline inephrine rica. 2018 ccessed o March 20 eonates. C nski M, Ch related h atrics. 202 ffect of no	al guidelin 2013 Feb 1 A, Doctor 1 Fries H, Gri A, Irazuzt en-Cawley ben P, Toriuckerberg I septic sh 2;37:666-8 asopressor term newl circulatory ournal of in preterm infusion ir 107:408-1 cinline on 1 23. Elinics in popotension 2 Dec 22:10 prepineph	es for ma ;39(2):16: A, Davis A eenwald E a J, Lin J, I R, Poulto res A, von A. Clinica ock: 2007 8. s for hypo agement born infant effects o pediatrics infants w nproves h .3. 2 March 2 erinatolog , Jasani B n in prete -0. rine on cli	a, Duff J, D B, Gutierre Lorts A, M In T, Relve Dessauer I practice I update fr I up	ugas MA z J, Hall ariscalco s M, B, om the hock. The hock sphrine i 3:345-9. vascular amics in de P, Ye : a
Appendix	Pediat	1103. 2022		0,.=0.0	5/.						
	Infusion ta					ection					
	Infusion ta	bles to as	sist with	concentr	ation sele		ration 5 m	icrogram	mL		
		bles to as fusion rat	ssist with es when	concentr	ation sele	e concenti					
	Table 1: Infusion ta (suggested	bles to as fusion rat	ssist with es when	concentr	ation sele	e concenti				0.9	1
	Infusion ta Table 1: Inf (suggested Rate (mL/hr)	bles to as fusion rat for weigl	es when nt <0.5 kg	concentrusing nora	ation sele adrenaline ning dose	e concenti <0.03 mid	crogram/k	g/minute)		0.9	1
	Infusion ta Table 1: Inf (suggested Rate (mL/hr) Weight	bles to as fusion rat for weigl	es when nt <0.5 kg	concentrusing nora	ation sele adrenaling ning dose 0.4	concenti <0.03 mid 0.5	0.6	g/minute)		0.9	1
	Infusion ta Table 1: Inf (suggested Rate (mL/hr) Weight (kg)	fusion rat for weigl 0.1	es when nt <0.5 kg	concentrusing normal and weal	ation sele adrenaline ning dose 0.4 Approx	concentrice concen	0.6	g/minute) 0.7 g/minute	0.8		
	Infusion ta Table 1: Inf (suggested Rate (mL/hr) Weight (kg) 0.5	fusion ratifor weight 0.1	es when nt <0.5 kg	concentrusing normal and weal 0.3	ation selection address addres	concentrication concentricatio	o.6 rogram/k 0.10	g/minute) 0.7 g/minute 0.12	0.8	0.15	0.17
	Rate (mL/hr) Weight (kg) 0.5	fusion rate for weight on the fortunation of the following of the followin	0.03 0.02	concentrusing normal and wear 0.3 0.05 0.03	ation selection address address address address address and a selection and a selection address addres	0.08 0.04	0.6 rogram/k 0.10 0.05	g/minute) 0.7 g/minute 0.12 0.06	0.8 0.13 0.07	0.15 0.08	0.17 0.08
	Rate (mL/hr) Weight (kg) 0.5 1	0.1 0.02 0.01 0.01	0.03 0.02 0.01	concentrusing normal and weal 0.3 0.05 0.03 0.02	ation selection address address address address address and a selection and a selection address addres	0.03 mid 0.5 imate mid 0.08 0.04 0.03	0.6 rogram/k 0.10 0.05 0.03	g/minute) 0.7 g/minute 0.12 0.06 0.04	0.8 0.13 0.07 0.04	0.15 0.08 0.05	0.17 0.08 0.06
	Rate (mL/hr) Weight (kg) 0.5 1 1.5	0.1 0.02 0.01 0.01 0.01	0.03 0.02 0.01	0.05 0.03 0.02 0.01	ation selection address address address address address and a selection and a selection address addres	0.08 0.03 0.04 0.02	0.6 rogram/k 0.10 0.05 0.03	g/minute) 0.7 g/minute 0.12 0.06 0.04 0.03	0.13 0.07 0.04 0.03	0.15 0.08 0.05 0.04	0.17 0.08 0.06 0.04
	Rate (mL/hr) Weight (kg) 0.5 1 1.5 2 2.5	0.1 0.02 0.01 0.01 <0.01 <0.01	0.03 0.02 0.01 0.01	0.05 0.03 0.02 0.01	ation selection address address address address address and a selection and a selection address addres	0.03 mid 0.5 imate mid 0.08 0.04 0.03 0.02 0.02	0.6 rogram/k 0.10 0.05 0.03 0.03	g/minute) 0.7 g/minute 0.12 0.06 0.04 0.03 0.02	0.13 0.07 0.04 0.03 0.03	0.15 0.08 0.05 0.04 0.03	0.17 0.08 0.06 0.04 0.03
	Rate (mL/hr) Weight (kg) 0.5 1 1.5 2 2.5 3	0.1 0.02 0.01 0.01 <0.01 <0.01	0.03 0.02 0.01 0.01 0.01	0.05 0.03 0.02 0.01 0.01	O.07	0.03 mid 0.5 imate mid 0.08 0.04 0.03 0.02 0.02	0.6 rogram/k 0.10 0.05 0.03 0.03 0.02 0.02	g/minute) 0.7 g/minute 0.12 0.06 0.04 0.03 0.02 0.02	0.13 0.07 0.04 0.03 0.03 0.02	0.15 0.08 0.05 0.04 0.03 0.03	0.17 0.08 0.06 0.04 0.03
	Rate (mL/hr) Weight (kg) 0.5 1 1.5 2 2.5 3 3.5	0.1 0.02 0.01 0.01 <0.01 <0.01 <0.01 <0.01	0.03 0.02 0.01 0.01 0.01	0.05 0.03 0.02 0.01 0.01 0.01	Approx 0.07 0.03 0.02 0.01 0.01	0.08 0.04 0.02 0.01 0.01	0.6 rogram/k 0.10 0.05 0.03 0.03 0.02 0.02	g/minute) 0.7 g/minute 0.12 0.06 0.04 0.03 0.02 0.02 0.02	0.13 0.07 0.04 0.03 0.03 0.02 0.02	0.15 0.08 0.05 0.04 0.03 0.03	0.17 0.08 0.06 0.04 0.03 0.03
	Rate (mL/hr) Weight (kg) 0.5 1 1.5 2 2.5 3 3.5 4	0.02 0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.03 0.02 0.01 0.01 0.01 0.01 0.01	0.05 0.03 0.02 0.01 0.01 0.01 0.01	0.4 Approx 0.07 0.03 0.02 0.01 0.01 0.01	0.03 mid 0.5 imate mid 0.08 0.04 0.03 0.02 0.02 0.01 0.01	0.6 rogram/k 0.10 0.05 0.03 0.02 0.02 0.01 0.01	g/minute) 0.7 g/minute 0.12 0.06 0.04 0.03 0.02 0.02 0.02 0.01	0.13 0.07 0.04 0.03 0.03 0.02 0.02	0.15 0.08 0.05 0.04 0.03 0.03 0.02	0.17 0.08 0.06 0.04 0.03 0.03 0.02
	Rate (mL/hr) Weight (kg) 0.5 1 1.5 2 2.5 3 3.5	0.1 0.02 0.01 0.01 <0.01 <0.01 <0.01 <0.01	0.03 0.02 0.01 0.01 0.01	0.05 0.03 0.02 0.01 0.01 0.01	Approx 0.07 0.03 0.02 0.01 0.01	0.08 0.04 0.02 0.01 0.01	0.6 rogram/k 0.10 0.05 0.03 0.03 0.02 0.02	g/minute) 0.7 g/minute 0.12 0.06 0.04 0.03 0.02 0.02 0.02	0.13 0.07 0.04 0.03 0.03 0.02 0.02	0.15 0.08 0.05 0.04 0.03 0.03	0.17 0.08 0.06 0.04 0.03 0.03

Table 2: Infusion rates when using noradrenaline concentration **10 microgram/mL** (suggested weight <1 kg)

Rate (mL/hr)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
Weight (kg)		Approximate microgram/kg/minute								
0.5	0.03	0.07	0.1	0.13	0.17	0.2	0.23	0.27	0.3	0.33
1	0.02	0.03	0.05	0.07	0.08	0.1	0.12	0.13	0.15	0.17
1.5	0.01	0.02	0.03	0.04	0.06	0.07	0.08	0.09	0.1	0.11
2	0.01	0.02	0.03	0.03	0.04	0.05	0.06	0.07	0.08	0.08
2.5	0.01	0.01	0.02	0.03	0.03	0.04	0.05	0.05	0.06	0.07
3	0.01	0.01	0.02	0.02	0.03	0.03	0.04	0.04	0.05	0.06
3.5	0.00	0.01	0.01	0.02	0.02	0.03	0.03	0.04	0.04	0.05
4	0.00	0.01	0.01	0.02	0.02	0.03	0.03	0.03	0.04	0.04
4.5	0.00	0.01	0.01	0.01	0.02	0.02	0.03	0.03	0.03	0.04
5	0.00	0.01	0.01	0.01	0.02	0.02	0.02	0.03	0.03	0.03

Table 3: Infusion rates when using noradrenaline concentration **20 microgram/mL** (suggested weight 1 to <3 kg)

Rate (mL/hr)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	
Weight (kg)		Approximate microgram/kg/minute									
0.5	0.07	0.13	0.2	0.27	0.33	0.4	0.47	0.53	0.6	0.67	
1	0.03	0.07	0.1	0.13	0.17	0.2	0.23	0.27	0.3	0.33	
1.5	0.02	0.04	0.07	0.09	0.11	0.13	0.16	0.18	0.2	0.22	
2	0.02	0.03	0.05	0.07	0.08	0.1	0.12	0.13	0.15	0.17	
2.5	0.01	0.03	0.04	0.05	0.07	0.08	0.09	0.11	0.12	0.13	
3	0.01	0.02	0.03	0.04	0.06	0.07	0.08	0.09	0.10	0.11	
3.5	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1	
4	0.01	0.02	0.03	0.03	0.04	0.05	0.06	0.07	0.08	0.08	
4.5	0.01	0.01	0.02	0.03	0.04	0.04	0.05	0.06	0.07	0.07	
5	0.01	0.01	0.02	0.03	0.03	0.04	0.05	0.05	0.06	0.07	

Table 4: Infusion rates when using noradrenaline concentration **60 microgram/mL** (suggested weight \geq 3 kg)

Rate (mL/hr)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
Weight (kg)		Approximate microgram/kg/minute								
0.5	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
1	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
1.5	0.07	0.13	0.2	0.27	0.33	0.4	0.47	0.53	0.6	0.67
2	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
2.5	0.04	0.08	0.12	0.16	0.2	0.24	0.28	0.32	0.36	0.4
3	0.03	0.07	0.1	0.13	0.17	0.2	0.23	0.27	0.3	0.33
3.5	0.03	0.06	0.09	0.11	0.14	0.17	0.2	0.23	0.26	0.29
4	0.03	0.05	0.08	0.1	0.13	0.15	0.18	0.2	0.23	0.25
4.5	0.02	0.04	0.07	0.09	0.11	0.13	0.16	0.18	0.2	0.22
5	0.02	0.04	0.06	0.08	0.1	0.12	0.14	0.16	0.18	0.2

Newborn use only

Table 5: Infusion rates when using noradrenaline concentration **120 microgram/mL** (suggested for fluid restricted babies requiring high inotropic support)

Rate (mL/hr)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
Weight (kg)	Approximate microgram/kg/minute									
0.5	0.4	0.8	1.2	1.6	2	2.4	2.8	3.2	3.6	4
1	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
1.5	0.13	0.27	0.4	0.53	0.67	0.8	0.93	1.07	1.2	1.33
2	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
2.5	0.08	0.16	0.24	0.32	0.4	0.48	0.56	0.64	0.72	0.8
3	0.07	0.13	0.2	0.27	0.33	0.4	0.47	0.53	0.6	0.67
3.5	0.06	0.11	0.17	0.23	0.29	0.34	0.4	0.46	0.51	0.57
4	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
4.5	0.04	0.09	0.13	0.18	0.22	0.27	0.31	0.36	0.4	0.44
5	0.04	0.08	0.12	0.16	0.2	0.24	0.28	0.32	0.36	0.4

Dose (microgram/kg/min) = $\frac{\text{Rate (mL/hr) x Concentration (microgram/mL)}}{\text{Weight (kg) x 60}}$

Rate (mL/hr) = $\frac{60 \text{ x Dose (microgram/kg/min) x Weight (kg)}}{\text{Concentration (microgram/mL)}}$

VERSION/NUMBER	DATE
Original 1.0	26/05/2025
Version 1.0 (minor errata)	5/06/2025
Current 1.0 (minor errata)	7/07/2025
Review	26/05/2030

This standard concentration formulary has been developed by the ANMF standard concentration working group. The working group (in alphabetical order): Mohammad Irfan Azeem, Susanah Brew, Cindy Chen, Michelle Jenkins, Kerrie Knox, Rebecca O'Grady

Authors Contribution of the current version

Primary author	Srinivas Bolisetty
Expert review	Koert de Waal, Martin Kluckow
Evidence Review	Srinivas Bolisetty
Nursing Review	Eszter Jozsa
Pharmacy Review	Thao Tran, Mohammad Irfan Azeem
ANMF Group contributors	Nilkant Phad, Bhavesh Mehta, Rebecca Barzegar, Rebecca O'Grady, Mohammad Irfan Azeem, Helen Huynh, Martin Kluckow, Michelle Jenkins, Stephanie Halena
Final editing	Thao Tran
Electronic version	Cindy Chen, Ian Callander
Facilitator	Srinivas Bolisetty

Citation for the current version

Bolisetty S, de Waal K, Kluckow M, Jozsa E, Gengaroli R, Tran T, Azeem MI, Phad N, Mehta B, Barzegar R, O'Grady R, Huynh H, Jenkins M, Halena S, Chen C, Callander I. Noradrenaline (Norepinephrine) – Standard concentration. Consensus formulary by the Australasian Neonatal Medicines Formulary group. Version 1, dated 5 June 2025. www.anmfonline.org